On Information Coverage for Location Category Based Point-of-Interest Recommendation
نویسندگان
چکیده
Point-of-interest (POI) recommendation becomes a valuable service in location-based social networks. Based on the norm that similar users are likely to have similar preference of POIs, the current recommendation techniques mainly focus on users’ preference to provide accurate recommendation results. This tends to generate a list of homogeneous POIs that are clustered into a narrow band of location categories (like food, museum, etc.) in a city. However, users are more interested to taste a wide range of flavors that are exposed in a global set of location categories in the city. In this paper, we formulate a new POI recommendation problem, namely top-K location category based POI recommendation, by introducing information coverage to encode the location categories of POIs in a city. The problem is NP-hard. We develop a greedy algorithm and further optimization to solve this challenging problem. The experimental results on two real-world datasets demonstrate the utility of new POI recommendations and the superior performance of the proposed algorithms.
منابع مشابه
A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملPERS: A Personalized and Explainable POI Recommender System
The Location-Based Social Networks (LBSN) (e.g., Facebook, etc.) have many factors (for instance, ratings, check-in time, location coordinates, reviews etc.) that play a crucial role for the Point-of-Interest (POI) recommendations. Unlike ratings, the reviews can help users to elaborate their opinion and share the extent of consumption experience in terms of the relevant factors of interest (as...
متن کاملA Survey of Point-of-interest Recommendation in Location-based Social Networks
Point-of-interest (POI) recommendation that suggests new places for users to visit arises with the popularity of location-based social networks (LBSNs). Due to the importance of POI recommendation in LBSNs, it has attracted much academic and industrial interest. In this paper, we offer a systematic review of this field, summarizing the contributions of individual efforts and exploring their rel...
متن کاملCategory-aware Next Point-of-Interest Recommendation via Listwise Bayesian Personalized Ranking
Next Point-of-Interest (POI) recommendation has become an important task for location-based social networks (LBSNs). However, previous efforts suffer from the high computational complexity, besides the transition pattern between POIs has not been well studied. In this paper, we proposed a twofold approach for next POI recommendation. First, the preferred next category is predicted by using a th...
متن کاملPoint-of-Interest Recommendation in Location Based Social Networks with Topic and Location Awareness
The wide spread use of location based social networks (LBSNs) has enabled the opportunities for better location based services through Point-of-Interest (POI) recommendation. Indeed, the problem of POI recommendation is to provide personalized recommendations of places of interest. Unlike traditional recommendation tasks, POI recommendation is personalized, locationaware, and context depended. ...
متن کامل